Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor.

نویسندگان

  • Elodie Laine
  • Christophe Goncalves
  • Johanna C Karst
  • Aurélien Lesnard
  • Sylvain Rault
  • Wei-Jen Tang
  • Thérèse E Malliavin
  • Daniel Ladant
  • Arnaud Blondel
چکیده

Allostery plays a key role in the regulation of the activity and function of many biomolecules. And although many ligands act through allostery, no systematic use is made of it in drug design strategies. Here we describe a procedure for identifying the regions of a protein that can be used to control its activity through allostery. This procedure is based on the construction of a plausible conformational path, which describes protein transition between known active and inactive conformations. The path is calculated by using a framework approach that steers and markedly improves the conjugate peak refinement method. The evolution of conformations along this path was used to identify a putative allosteric site that could regulate activation of Bacillus anthracis adenylyl cyclase toxin (EF) by calmodulin. Conformations of the allosteric site at different steps along the path from the inactive (free) to the active (bound to calmodulin) forms of EF were used to perform virtual screenings and propose candidate EF inhibitors. Several candidates then proved to inhibit calmodulin-induced activation in an in vitro assay. The most potent compound fully inhibited EF at a concentration of 10 microM. The compounds also inhibited the related adenylyl cyclase toxin from Bordetella pertussis (CyaA). The specific homology between the putative allosteric sites in both toxins supports that these pockets are the actual binding sites of the selected inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning and expression of the Bacillus anthracis edema factor toxin gene: a calmodulin-dependent adenylate cyclase.

The Bacillus anthracis exotoxin is composed of a lethal factor, a protective antigen, and an edema factor (EF). EF is a calmodulin-dependent adenylate cyclase which elevates cyclic AMP levels within cells. The entire EF gene (cya) has been cloned in Escherichia coli, but EF gene expression by its own B. anthracis promoter could not be detected in E. coli. However, when the EF gene was placed do...

متن کامل

Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor

Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, thus reducing production of reactive oxygen specie...

متن کامل

Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor

Adenylyl cyclases (ACs) catalyze the conversion of ATP into the second messenger cAMP. Membranous AC1 (AC1) is involved in processes of memory and learning and in muscle pain. The AC toxin edema factor (EF) of Bacillus anthracis is involved in the development of anthrax. Both ACs are stimulated by the eukaryotic Ca(2+)-sensor calmodulin (CaM). The CaM-AC interaction could constitute a potential...

متن کامل

Evaluation of immune response to recombinant Bacillus anthracis LFD1-PA4 chimeric protein

Background: Anthrax is a particularly dangerous infectious disease that affects humans and livestock. Efficacious vaccines that can rapidly induce a long-term immune response are required to prevent anthrax infection in humans. Domains 4 and 1 of the protective antigen (PA) and lethal factor (LF), respectively, have very high antigenic properties. Aims: In this...

متن کامل

Discovery of a small molecule that inhibits the interaction of anthrax edema factor with its cellular activator, calmodulin.

The catalytic efficiency of adenylyl cyclase activity of edema factor (EF) from Bacillus anthracis is enhanced by approximately 1000-fold upon its binding to mammalian protein calmodulin (CaM). A tandem cell-based and protein binding-based screen of a 10,000 member library identified a molecule that inhibits the EF-CaM interaction and therefore the adenylyl cyclase activity. A combination of fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 25  شماره 

صفحات  -

تاریخ انتشار 2010